
Digital Design Logic www.EngrCS.com page 62

Digital Logic Design - Chapter 8-VHDL
(In addition to the code include design documentation either as comments in the code or separate document.)

1S. Write a VHDL behavioral program to implement a pulse-triggered D latch.

Solution:

library IEEE;
use IEEE.std_logic_1164.all;

entity Vdlatch is
 port (D, CLK: in std_logic;
 Q, QN: buffer std_logic); -- note buffer is a new mode type.
end Vdlatch;

architecture Vdlatch_b of Vdlatch is
begin
process (CLK, D)
 begin
 if (CLK = '1') then
 Q<=D;
 end if;
 QN <= not Q;
 end process;
end Vdlatch_b;

1U. Write entity code for a (2-input) XNOR.

Solution:

2S. Complete a VHDL behavioral design for an edge-triggered D latch .
Note: The expression (signal’event) is only true when the signal is changing. This is referred to as the

event attribute of the signal. This attribute in conjunction with process() should be considered in
completing this design. <Why is “signal’event” even mentioned; the way that this is written suggests
that signal’event was mentioned before.>

Solution:
 “CLK'event is no required since the process will be entered only when CLK changes.”

library IEEE;
use IEEE.std_logic_1164.all;

entity Vdff is
 port (D, CLK: in std_logic;
 Q : out std_logic);
end Vdff;

architecture Vdff_b of Vdff is
begin
process(CLK)
 begin
 if (CLK'event and CLK='1') then
 Q <= D;
 end if;
 end process;
end Vdff_b;

Digital Design Logic www.EngrCS.com page 63

2U. Write a VHDL behavioral program to implement a rising-edge-triggered JK flip flop.

Solution:

3S. Design a VHDL model for a 16-bit register with Clock Enable, active-low Output Enable, and active-low
Clear.

Solution:

library IEEE;
use IEEE.std_logic_1164.all;

entity Vreg16 is
 port (CLK, CLKEN, OE_L, CLR_L: in STD_LOGIC;
 D: in STD_LOGIC_VECTOR (1 to 16); -- Input bus
 Q: out STD_ULOGIC_VECTOR (1 to 16)); -- output bus (three-
 -- state, unresolved)
end Vreg16;

architecture Vreg16 of Vreg16 is
signal CLR, OE: STD_LOGIC; -- active-high version of

-- signals
signal IQ: STD_LOGIC_VECTOR(1 to 16); -- internal Q signal
begin
process (CLK, CLR_L, CLR, OE_L, OE, IQ)
 begin
 CLR <= not CLR_L;
 OE <= not OE_L;
 if (CLR = '1') then
 IQ <= (others =>'0'); <Explain this line.>
 elsif (CLK'event and CLK='1') then
 if (CLKEN = '1') then
 IQ <= D;
 end if;
 end if;
 if OE = '1' then
 Q <= To_StdULogicVector(IQ); <Explain this line.>
 else Q <= (others => 'Z'); <Explain this line.>
 end if;
 end process;
end Vreg16;

3U. Design a VHDL model for a 12-bit register with Clock Enable, active-high Output Enable, and active-high
Clear.

Solution:

4S. Using VHDL, design a 4-to-1 MUX. The two bit input “sel”, selects the input d0-d3 that is connected to output
“f”. For example when sel=”01”, f=d1.

Solution:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity MUX4 is

Digital Design Logic www.EngrCS.com page 64

 port (sel : in std_logic_vector(1 downto 0);
 d : in std_logic_vector(3 downto 0);
 f : out std_logic);
end MUX4;

architecture dataflow of MUX4 is

begin

f <= d(0) when sel = "00" else
 d(1) when sel = "01" else
 d(2) when sel = "10" else
 d(3);

end dataflow;

4U. Using VHDL, design a 8-to-1 MUX. The three bit input “sel”, selects the input d0-d8 that is connected to
output “f”. For example when sel=”010”, f=d2.

Solution:

5S. Design a 2–Bit Ripple Carry Adder with carry in and a carry out using VHDL.

Solution:
library ieee;
use ieee.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity adder2_b is
 port (ci : in std_logic; --carry in signal
 a, b : in std_logic_vector (1 downto 0); --2 2-bit numbers, a and b
 s : out std_logic_vector (1 downto 0); --2-bit sum
 co: out std_logic); --carry out term or bit (overflow)

end adder2_b;

architecture dataflow of adder2_b is
signal sum: std_logic_vector (2 downto 0); --Sets the signal 'sum' to a 3-bit number,
 -- to account for an overflow bit (carry out)
begin
 sum <= ('0' & a) + b + ci; --('0' & a) forces a to become a 3-bit number
 s <= sum (1 downto 0) ; -- in order to account for a carry-in bit
 co <= sum (2); --sum(0) and sum (1) bits are the sum
 -- of a and b
end dataflow; -- sum(2) is the carry-out bit (overflow)

5U. Design a 8–Bit Ripple Carry Adder with carry in and a carry out using VHDL.

Solution:

6S. Design the architectures for a rising edge D flip-flop for each of the following cases:
a) with asynchronous reset using an if statement.
b) with synchronous reset using an if statement.
c) with synchronous reset using a wait until statement.

Digital Design Logic www.EngrCS.com page 65

Solution

All of the architectures have the following entity declaration in common:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity dff is

 port (CLK,D,RESET: in std_logic;
 Q: out std_logic);

end dff;

a) The asynchronous reset architecture using an if statement:

architecture asyn_reset of dff is

begin
 process (CLK, RESET, D)
 begin
 if RESET = '1' then
 Q <= '0';
 elsif rising_edge (CLK) then
 Q <= D;
 end if;
 end process;

end asyn_reset;

b) The synchronous reset architecture using an if statement:

architecture syn_reset of dff is
begin
 process (CLK, RESET, D)
 begin
 if rising_edge (CLK) then
 if RESET = '1' then
 Q <= '0';
 else
 Q <= D;
 end if;
 end if;
 end process;
end syn_reset;

c) The synchronous reset architecture using a wait until statement:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity dff is
 port (CLK,D,RESET: in std_logic;
 Q: out std_logic);
end dff;

architecture syn_reset of dff is
begin
 process -- no sensitivity list.

Digital Design Logic www.EngrCS.com page 66

 begin
 wait until rising_edge (CLK);
 if RESET = '1' then
 Q <= '0';
 else
 Q <= D;
 end if;
 end process;
end syn_reset;

6U. Design the architectures for a rising edge JK flip-flop for each of the following cases:
a) with asynchronous reset using an if statement.
b) with synchronous reset using an if statement.
c) with synchronous reset using a wait until statement.

Solution

7S. Create a complete VHDL design for the system described by the following state diagram:.

Solution:

library ieee;
use ieee.std_logic_1164.all;

entity fsm_1_d is
 port (CLK, CLR, X: in std_logic;
 Y: out std_logic_vector (1 to 2);
 Z: out std_logic);

end fsm_1_d;

architecture design of fsm_1_d is

 type state_type is (a, b, c, d);
 signal PS, NS: state_type;

begin
sync_proc: process (CLK, CLR, NS)
 begin
 if (CLR = '1') then
 PS <= a;
 Z <= '0';
 elsif rising_edge (CLK) then

a
00,0

d
11,0

b
10,0

c
01,1

state
Y1Y2,Z

X’

CLR

X

Digital Design Logic www.EngrCS.com page 67

 PS <= NS;
 end if;
 end process sync_proc;

comb_proc: process (PS, X)
 begin
 case PS is
 when a => Z <= '0';
 if X = '1' then
 NS <= b;
 else
 NS <= a;
 end if;
 when b => Z <= '0';
 NS <= c;
 when c => Z <= '1';
 NS <= a;
 when others => Z <= '0';
 NS <= a;
 end case;
 end process comb_proc;

with PS select
 Y <= "00" when a,
 "10" when b,
 "01" when c,
 "11" when d,
 "00" when others;

end design;

7U. Create a complete VHDL design for the system described by the following state diagram:.

Solution:

8S. Complete the timing diagram in simulation window drawn at the bottom of the page based on the following
the VHDL Code segment:

library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity quiz_ent is

a
00,0

d
11,0

b
10,0

c
01,1

state
Y1Y2,Z

X’

CLR

X

X’

X’

X

X

X’

X

Digital Design Logic www.EngrCS.com page 68

 port (CLK, CLR, X: in std_logic;
 Z: out std_logic
);
end quiz_ent;
architecture quiz_arch of quiz_ent is
 Signal PS, NS: integer;
begin
 proc_a: process (CLK, CLR)
 begin
 if (CLR = '1') then NS <= 1;
 elsif rising_edge (CLK) then
 PS <= NS;
 If (NS < 2**8 and x='1') then NS <= NS*2;
 elsif (NS > 0 and x='0') then NS <= NS/2;
 end if;
 end if;
 end process proc_a;

 proc_b: process (PS, X)
 begin
 if (PS > 31) then Z <= '1';
 else Z <= '0';
 end if;
 end process proc_b;
end quiz_arch;

TIMING DIAGRAM

Solution:

CLK

CLR

PS ?

X

Z

NS 1

1 2 3 4 5 6 7 8 9 10

Simulation Window

Digital Design Logic www.EngrCS.com page 69

8U. Write VHDL code for a vending machine that accepts 5, 10 and 25 cents coins and deliver the product when
$1 has been deposited.

Solution:

